Neurovascular Coupling
and Methods

Thomas Liu
Center for Functional MRI
University of California San Diego
Topics

• Neurovascular factors
• BOLD signal model
• Calibrated fMRI
• Resting State fMRI
• Multimodal Imaging
Test Slide

Submit response at: PollEv.com/be280a
Most fMRI studies assume that the BOLD signal is proportional to brain activity. This is a reasonable assumption for basic studies of healthy young unmedicated subjects. However, the assumption is less valid for studies where disease, medication, and age may be a factor.

Boynton et al, 1996
BOLD Signal Chain

Ianetti and Wise, MRI, 2007
Carbon Dioxide

Lower CBF

Higher CBF

Average BOLD Change (%)

Time (seconds)

Cohen et al 2002
(a) Hemodynamic Response Function

- Young; CBF = 65.7
- Old; CBF = 52.4
- Old w/caffeine; CBF = 37.4
Effects of Alzheimer’s Disease Risk

Fleisher et al 2008
Topics

- Neurovascular factors
- BOLD signal model
- Calibrated fMRI
- Resting State fMRI
- Multimodal Imaging
Key properties of the NMR signal

Free Induction Decay (FID)

e^{-t/T_2^*}

Resonant Frequency: $\nu_0 = \gamma B_0$
(128 MHz at 3T)

Relaxation Time: T_2^*
(~50 ms at 3T)

Buxton 2014
Signal Decay

Time

0

TE

Some inhomogeneity, Some dephasing

More inhomogeneity, More dephasing, Decrease in MR signal
The overall decay has the form.

$$\exp\left(-R_2^* (\bar{r}) t \right)$$

where

$$R_2^* = \frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T'_2}$$

Due to random motions of spins. Not reversible.

Due to static inhomogeneities. Reversible with a spin-echo sequence.
BOLD Signal Change

Baseline Signal
\[S_B = M_0 \exp(-TE \cdot R^*_{2,B}) \]

Activation Signal
\[S_A = M_0 \exp(-TE \cdot R^*_{2,A}) \]

\[\frac{\Delta BOLD}{BOLD_0} = \frac{S_A - S_B}{S_B} \approx -TE \cdot \Delta R^*_2 \]
BOLD Contrast

Source: Ogawa et al., 1992

Fig. 3. Reducing TE reduces amplitude of the visual stimulation-induced intrinsic signal change. The time course of intrinsic signal changes observed at a fixed caudal position in primary visual cortex are shown for TE = 40 ms and TE = 8 ms. Other experimental conditions were as in Fig. 2, except that patterned-flash visual stimulation was provided between images 15–25 and 35–55.
Multiecho ICA (ME-ICA)

P Kundu et al, Neuroimage, 2012
R2* Depends on dHB

Oxygen binds to the iron atoms to form oxyhemoglobin HbO₂

Release of O₂ to tissue results in deoxyhemoglobin dHBO₂

Some dHB, Some dephasing

More dHB, More dephasing, Decrease in MR signal.
Higher R₂*
BOLD Signal Equation

\[R_{2,dHB}^* \propto \text{Total dHb} \]

\[R_{2,dHB}^* = A \cdot CBV \cdot [dHb]_v^\beta \]

Simulations suggest \(\beta \approx 1.5 \) is a reasonable overall value.

\(\beta \approx 2 \)

\(\beta \approx 1 \)

Cassot et al, 2006

Ogawa et al, 1993; Boxerman et al 1995; Hoge et al. 1999
Oxygen Extraction

\[[\text{dHB}]_{\text{venous}} = \text{OEF} \times [\text{O}_2]_{\text{arterial}}\]

OEF = Oxygen Extraction Fraction

Cassot et al, 2009
Blood Flow and Oxygen Metabolism

Cerebral Blood Flow

\[\text{CBF} \ [O_2]_{\text{arterial}} \]

Oxygen extraction fraction (OEF)

Cerebral Metabolic Rate of Oxygen

\[\text{CMRO}_2 = \text{OEF} \times \text{CBF} \times [O_2]_{\text{arterial}} \]
Deoxyhemoglobin

\[[dHB]_{venous} = \text{OEF} \times [O_2]_{arterial} \]
\[= \frac{\text{CMRO}_2}{\text{CBF}} \]

Cassot et al, 2009
Blood Flow and Oxygen Metabolism

\[[dHB]_{venous} = \frac{\text{CMRO}_2}{\text{CBF}} \]

Cerebral Blood Flow

CMRO\textsubscript{2}

Cerebral Metabolic Rate of Oxygen

\[\text{CBF} \quad \rightarrow \quad \text{CMRO}_2 \quad \rightarrow \quad [dHB]_{venous} \quad \leftarrow \quad \text{CBF} \]

Oxygen extraction fraction (OEF)

\[[\text{dHb}]_{venous} = \frac{\text{CMRO}_2}{\text{CBF}} \]

[dHb]_{venous} = \frac{\text{CMRO}_2}{\text{CBF}}
BOLD Signal Path

\[R_{2*}^{dHB} = A \text{ CBV} \left[dHB \right]_{venous}^\beta \]

\[\approx A \text{ CBV} \left(\text{CMRO}_2 / \text{CBF} \right)^\beta \]
fMRI: Spatial Temporal Dynamics

arteriole capillary bed venule

Neural activity \rightarrow CMRO$_2$

CBF

oxyHb deoxyHb

Initial dip

Positive BOLD

CBF CMRO$_2$ CBV

Post-stimulus Response

CBF CMRO$_2$ CBV

dHb

CMRO$_2$

CBV

dHb
Questions

1. The magnitude of the BOLD signal change will ______ as a function of echo time (TE).

2. An increase in the functional CBF response will tend to ______ the BOLD signal.

3. An increase in the function CMRO$_2$ response will tend to ______ the BOLD signal.

Submit response at: PollEv.com/be280a
BOLD Signal Model

Neural Activity ➔ Cerebral Blood Flow (CBF)
Metabolism (CMRO$_2$) ➔ Cerebral Blood Flow (CBF)

deoxyHb ➔ BOLD Signal

\[
\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = -TE \cdot \Delta R_{2,dHB}^* \approx M \left(1 - f^{\alpha-\beta} m^\beta \right)
\]

Grubb’s Relation; $\alpha \approx 0.38$

\[
\frac{\text{CBV}}{\text{CBV}_0} = \left(\frac{\text{CBF}}{\text{CBF}_0}\right)^\alpha
\]

\[
f = \frac{\text{CBF}}{\text{CBF}_0}; \quad m = \frac{\text{CMRO}_2}{\text{CMRO}_{2,0}}
\]

Davis et al. 1998; Hoge et al. 1999
\[\frac{\Delta BOLD}{BOLD_0} \approx M \left(1 - f^{\alpha - \beta} m^{\beta} \right) \]

Maximal BOLD signal

\[M = TE \cdot A \cdot CBV_0 \cdot [dHb_0]^\beta \]
CBF/CMRO\textsubscript{2} Coupling Factor

\[n = \frac{\% \Delta \text{CBF}}{\% \Delta \text{CMRO}_2} = \frac{f - 1}{m - 1} \]
Why is the blood flow change so large?

A large blood flow change prevents tissue pO_2 from dropping during neural activation.

Buxton 2013
\[
\frac{\Delta \text{CBF}}{\text{CBF}_0} \approx M \left(1 - f^{\alpha - \beta} m^\beta \right)
\]

CBF/CMRO\text{$_2$} Coupling Factor

\[n = \frac{\% \Delta \text{CBF}}{\% \Delta \text{CMRO}_2} = \frac{f - 1}{m - 1}\]
Different ways to accomplish the same change in BOLD

n=2.5; M = 8.0

n=2.50; M = 6.3

n=2.15; M = 8.0
Effect of Age on CBF and BOLD Responses in the Hippocampus

Restom et al, NIMG 2007
Neural Activity \Rightarrow Cerebral Blood Flow \Rightarrow Metabolism (CMRO$_2$) \Rightarrow Cerebral Blood Volume \Rightarrow deoxyHb \Rightarrow BOLD Signal

Graphs:
- **CBF:**
 - Y-axis: % increase
 - X-axis: Time
 - Lines: Young (Exp) and Old (Exp)

- **BOLD:**
 - Y-axis: % increase
 - X-axis: Time
 - Lines: Young (Exp), Old (Exp), and Old (Sim)
Effect of age on CBF and BOLD

- (f) Baseline CBF
- (b) % ΔBOLD(R_2^*)
- (c) % ΔCBF

ΔCMRO$_2$

Young | Old
Normalized CMRO$_2$
Young | Old
Topics

• Neurovascular factors
• BOLD signal model
• Calibrated fMRI
• Resting State fMRI
• Multimodal Imaging
Neural Activity \rightarrow Metabolism (CMRO$_2$) \rightarrow Cerebral Blood Flow \rightarrow ASL Signal

Cerebral Blood Flow \rightarrow Cerebral Blood Volume \rightarrow deoxyHb \rightarrow BOLD Signal
Calibrated fMRI (Davis et al 1998)

\[b \approx M \left(1 - f^{\alpha-\beta} m^\beta \right) \]

Assume CO2 inhalation doesn’t change CMRO₂

\[M = \frac{b_{CO₂}}{1 - f^{\alpha-\beta}} \]

\[m^\beta = \left(1 - \frac{b}{M} \right) f^{\alpha-\beta} \]
Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging

Claudine J. Gauthier a,b,+, Cécile Madjar b, Laurence Desjardins-Crépeau b,c, Pierre Bellec b,d, Louis Bherer b,c, Richard D. Hoge a,b
\[M = \frac{b_{CO_2}}{1 - f_{CO_2}^{\alpha-\beta}} \]

\[m^\beta = \left(1 - \frac{b}{M} \right)^{f_{\alpha-\beta}} \]

A

Bar graph showing differences in M (%): GM, LF, RF, P.

- Younger
- Older

B

Bar graph showing differences in %ΔCMRO2: LF, RF, P.

- Younger
- Older
Questions

1. If baseline CBF is increased and all other factors are relatively constant, then M will tend to _____

2. If M increases and all other factors are held constant, the BOLD signal will ______.

2. If M increases but the measured BOLD and CBF signal remains the same, then our estimate of the cerebral rate of oxygen metabolism (CMRO$_2$) would ______

Submit response at: PollEv.com/be280a
Emerging Methods

Hypercapnia/hyperoxia \rightarrow estimates of absolute CMRO$_2$

QUIXOTIC: Venous T$_2$ \rightarrow venous O$_2$

Bolar et al 2011
\[R_2^* = R_2' + R_2 \]

Use asymmetric spin-echo to estimate \(R_2' \)
Then scale to estimate M without use of hypercapnia

Blockley et al 2015
Calibrated fMRI

- Calibrated fMRI based on the Davis model can provide quantitative measures of functional responses, but is sensitive to assumptions.

- Can be difficult to apply to cognitive tasks and special populations, due to low sensitivity of ASL CBF measures.

- The need for breathhold or hypercapnia can also be an issue. Hyperoxia-based methods have been proposed as an alternative.

- Emerging methods are aimed at (a) providing absolute measures of CMRO$_2$ and OEF or (b) simplifying the acquisition process (e.g. eliminate hypercapnia).
Topics

- Neurovascular factors
- BOLD signal model
- Calibrated fMRI
- Resting State fMRI
- Multimodal Imaging
Resting-State fMRI

Fox and Raichle 2005; Iannetti and Wise 2007; http://www.youtube.com/watch?v=VaQ66lDZ-08&feature=plcp
Resting-State BOLD Connectivity

Task-Related Motor Activation Map

Resting State Correlation Map

Resting State fMRI Signals From Left and Right Motor Cortices
Decrease in HDR amplitudes leads to a decrease in correlation between BOLD measures of 0.54 to 0.41.

Liu, NIMG 2013
Calibrated fMRI of Resting-state Connectivity

Wu et al, NIMG 2009
Calibrated fMRI of Resting-state Measures

As BOLD signals get smaller

\[
\left(\frac{CMRO_2}{CMRO_{20}} \right)^\beta = \left(\frac{CBF}{CBF_0} \right)^{\beta - \alpha} \left[1 - \left(\frac{\Delta BOLD}{BOLD_0} \right) \right]
\]

CMRO\textsubscript{2} estimates are driven primarily by the CBF measures

Restom et al 2008; Rack-Gomer 2011
Case Study: Effects of Hypercapnia on Functional Connectivity

Biswal et al, JCBFM 1997

Xu et al, JCBFM 2011
Chen and Pike, JCBFM, 2010

\[\text{CBF}_0 \uparrow \rightarrow \text{dHB}_0 \downarrow \rightarrow \text{M} \downarrow \rightarrow \text{BOLD} \downarrow \]

\[\Delta\text{CBF} \]

\[\text{CMRO}_{2,0} \downarrow \]

CMBF Responses

\(r = 0.74; p = 1.50 \times 10^{-2} \)

\(r = 0.79; p = 6.31 \times 10^{-3} \)

Xu et al, JCBFM 2011

\(\Delta \text{CBF} \)

Liau et al NIMG 2009
Case Study: Effects of Caffeine on Functional Connectivity

Functional connectivity maps for representative subject

Wong et al; NIMG 2012; Rack-Gomer et al, NIMG, 2009
CBF₀ ↓ → dHB₀ ↑ → M ↑ → BOLD ↑
CMRO₂,₀ ↑ → ?

n ↓ → BOLD ↓

Chen and Parrish 2009; Rack-Gomer et al, NIMG, 2009; Griffeth et al 2011; Xu et al ISMRM2014, p. 4168
Topics

• Neurovascular factors
• BOLD signal model
• Calibrated fMRI
• Resting State fMRI
• Multimodal Imaging
Case Study: Effects of Caffeine Revisited

4 OR 6

PRE

Caffeine

OR

Placebo

POST
Inverse Model

Forward Model

Sensor Space

Source Space

Brookes et al 2011

Group Analysis

Single Subject Analysis
Higher vigilance \rightarrow lower GS \rightarrow more anticorrelation

Wong et al 2013
Δ vigilance = post dose - pre-dose vigilance

Δ GS Amplitude = post dose - pre-dose GS Amplitude

Wong et al 2013
Summary

• The BOLD signal is a complex function of the baseline state and changes in blood flow, volume, and metabolism.
• Differences in the BOLD signal do NOT always reflect differences in neural activity.
• Instead they make reflect differences in the baseline vascular or metabolic state.
• Calibrated fMRI can provide additional insights into differences in brain activity, especially in the presence of disease, medication, and age. However, it is a technically challenging method and may be difficult to apply in certain populations.
• Application of calibrated fMRI to resting-state fMRI needs further study.
• Multimodal imaging can provide insights that are not achievable with fMRI alone.
Acknowledgements

Hongjian He
Valur Olafsson
Anna Leigh Rack-Gomer
Khaled Restom
Omer Tal
Alec Wong
Rick Buxton
Valerie Griffeth
Eric Wong

Mithun Diwakar
Mingxiong Huang

Markus Plank
Howard Poizner
Joe Snider
Arterial spin labeling (ASL)

1: Tag by Magnetic Inversion

2: Control - Tag = ΔM ∝ CBF
Whole brain CBF Images from 1 subject scanned at each of the 4 sites are shown below. Grayscale bar indicates units of ml/(100g-min).
ASL Time Series

Wait →

- Tag by Magnetic Inversion
- Control

Image 1:
-0.5

Image 2: 1
+0.5

Image 3: -0.5
-1

Image 4: +0.5

Perfusion Images

Raw ASL time series

-0.5 to +0.5