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Real-Time Functional Magnetic Resonance Imaging1
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Magnetic resonance imaging (MRI) has been shown to be useful
in the detection of brain activity via the relatively indirect coupling
of neural activity to cerebral blood flow and subsequently to mag-
netic resonance signal intensity. Recent technical advances have
made possible the continuous collection of successive images at a
rate rapid compared with such signal changes and in the statistical

processing of these image time series to produce tomographic
maps of brain activity in real time, with updates of 10 frames/s

or better. We describe here our preferred method of real-time
functional MRI and some of the early results we have obtained
with its use. q 2001 Elsevier Science

Traditionally, magnetic resonance imaging (MRI) has
been a slow imaging modality. The physics of MRI re-
quire that increases in imaging speed result in signal
losses. Specifically, the MR signal derives from the con-
version of the sample (e.g., tissue) magnetization to
a radio signal, and the magnetization recovers rather
slowly. The relationship between MR signal (SI), the
time between data collections (TR), and the longitudinal
magnetization rate characteristic of the particular tis-
sue (T1) is described by

SI 5 k [1 2exp(2TR/T1)] [1]

In Eq. [1], k includes a wide variety of additional factors

including other tissue properties (T2, diffusion, flow,
etc.), instrument parameters (magnetic field strength,
radio coils, etc.), and geometrical issues. Although es-
sentially all protons produce MR signal, the overwhelm-
ing majority of the signal in medical imaging derives
from highly mobile aqueous and lipid proton nuclei. In
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these tissues, the T1 rates range from a few tenths of
a second to several seconds (1). This dramatically limits
the possibility of “real-time” MRI. For example, if data
are collected in this fashion from a blood sample (T1 '
1.5 s) every second, the signal intensity is reduced by
more than 51% compared with a single data collection.
This would not be a problem, but for the fact that the
signal-to-noise ratio in the MR experiment is already
quite small, and limiting, to normal applications. In
conventional MRI, single images are formed from 32
to as many as 1024 repeated data sampling events,
resulting in total imaging times of several minutes
per picture.

Fortunately, over the past 15 years, technical ad-
vances in imaging have enabled substantial reductions
in imaging time. The first and perhaps most clinically
significant step was the development of low-flip angle of
“FLASH” imaging (2), which reduced practical imaging
times to several seconds. FLASH imaging makes much
more efficient use of the available magnetization by
taking advantage of the nonlinear conversion of magne-
tization to signal. Although not presently relevant to
functional MRI, the technique known as RARE (3, 4),
or Fast Spin Echo, resulted in a significant speed advan-
tage to clinical imaging [for a review of these methods,
see Cohen (5)]. The most dramatic speed advances, how-
ever, derive from the method known as echo-planar
imaging (EPI). This technology was originally conceived
as early as 1977 by Mansfield (6) and brought into
laboratory practice only a few years later. However,
the hardware available at the time was rather limited.
Practical EPI became available a dozen years later,
when high-field magnets became readily obtainable,

when fast analog-to-digital convertors became cost-ef-
fective, and when advanced engineering made possible
the production of the specialized very high speed, high-
power, electromagnetic systems (gradients) needed for
imaging applications (7). Mansfield’s group was the
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first to publish real-time MRI data by combining the
EPI method with special-purpose imaging processing
hardware, so that the data could be converted continu-
ously to images (8). The fusion of EPI and low-flip-angle
imaging made it possible to collect high-quality images
(e.g., of the beating heart) at up to 16 frames per second
(9). While EPI opened a large number of significant
applications (10), the use of “real-time” MRI was con-
strained by the cost of special-purpose hardware and
systems engineering and the limited range of identi-
fied applications.

Probably the most significant use of ultrafast imaging
has been in the observation of blood flow and perfusion
in the human brain. Rosen and colleagues realized that
cerebral perfusion might be assessed with MRI by
applying well-known tracer kinetic principles to study
the signal changes that accompany the passage of intra-
vascular contrast agents as they pass through the
cerebrovasculature (11). On its own, this technique is
exceedingly valuable in clinical assessment of primarily
vascular problems, such as stroke (12, 13), as well as
in conditions, such as cancer, that result in perfusion
abnormalities (14).

Cerebral blood flow (and blood volume), however, has
long been known to increase locally during periods of
increased neural activity. In fact, the first observations
of this association date back more than a century. That
this coupling should occur was predicted from the earli-
est moments of the growth of physiological psychology.
In one of his many insightful passages, James stated
that: “We must suppose a very delicate adjustment
whereby the circulation follows the needs of the cerebral
activity. Blood very likely may rush to each region of
the cortex according as it is most active, but of this we
know nothing” (15). That same year, Roy and Sherring-
ton (16) reported that the color of the brain reddened
in response to local electrical stimulation, and inferred
(correctly) that this was the result of increased blood
flow. That vascular or metabolic changes might be used
as markers for brain activity has been exploited in a
variety of methods including autoradiography with 2-
deoxyglucose (17), xenon-enhanced computed tomogra-
phy (17a), positron emission tomography (18, 19), and,
much more recently, direct optical methods (20).

Neurovascular coupling as an activity marker was
exploited first with fast MRI in 1990 by Belliveau and
colleagues (21). In these studies, the blood volume map-

ping methods developed by Rosen and co-workers were
applied successively in conditions of “rest” and strong
visual stimulation. By forming difference images, this
group was able to show those regions whose blood vol-
ume was increased during visual stimulation. By com-
parison to PET, optical, autoradiographic, and xenon
COHEN

methods, this new form of functional MRI was less inva-
sive and had much better spatial resolution and was
thus hailed as a revolutionary advance in the study of
human brain function.

Concurrently, however, other investigators had noted
that the MR signal has a strong dependence on the
blood oxygen level. Ogawa et al. (22) reported that re-
ducing the blood oxygen content, especially in high-field
MRI, could be used to bring the venous microvascula-
ture into high relief, while Turner et al. (23) showed
that large global decreases in the signal from cat brain
occurred when the animals breathed a high-nitrogen/
low-oxygen atmosphere. Working at Harvard, Kwong
showed that similar signal changes took place in the
human brain during breath holding. Both Kwong’s and
Ogawa’s groups realized quickly that this too could be
used as a marker for neural activity and both showed
in 1992 the first images from the technique that would
become known as functional MRI (fMRI) (24, 25).
Briefly, the method is understood to work as follows:

Increases in neural activity are metabolically costly
and require an increase in substrate (presumably oxy-
gen) delivery. Depletion of substrate in the capillaries
reduces the transcapillary concentration gradients. To
maintain the needed gradients, blood flow is increased.
One consequence is an increase in venous oxygen (26).
Although the physiological signaling that couples neu-
ral activity and blood flow is still not known precisely,
it is likely to involve nitric oxide, vasoactive intestinal
polypeptide, carbon dioxide, or a combination of these
factors.

Mechanically, the method requires tracking the sig-
nal changes in the MR images that occur over time
during cognitive, sensory, or other neural challenges.
Although the brain electrical activity changes rapidly,
over a millisecond time scale, the blood flow changes
are relatively slow. Kwong et al., for example, pointed
out that during sustained visual stimulation, the MR
signal continued to increase for about 7 s (24). Since
that time, several groups have reported observing a
predicted signal decrease within the first half-second
of brain activation (27–29), although this remains an
area of controversy. In any case this time scale is nearly
ideal for study by echo-planar magnetic resonance; EPI
is readily capable of imaging the entire brain every 1

to 2 s. At this sampling density, MRI can accurately
follow the time course of brain activation. With this
background understanding of fMRI, it became clear
that the fusion of EPI, rapid computer processing and
functional imaging would make a real-time implemen-
tation possible.
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Clinical Applications of Functional MRI

During the initial years of its use, functional MRI
attracted its greatest attention for the groundbreaking
applications it allowed in the basic neurosciences (21,
30). Indeed, through fMRI we now have a much more
sophisticated understanding of the neural architecture
of higher-level vision [e.g., (31)], motor control (32),
mental imagery (33), language processing (34, 35), and
a wide variety of other tasks. From a public health
perspective, however, there are other immediate gains
to be realized. In this article we first explore the most
important limits to the broader application of fMRI.
In the latter sections, we show how we have developed
a set of methods that directly address these key
limitations.

Surgical Planning
The imaging tools available to guide neurosurgeons

in both planning of the surgical approach and sparing
of eloquent cortex have traditionally been limited. The
method of electrocorticography, made famous by Pen-
field and Boldrey (36), is still used commonly today. In
this approach, the surgeon studies the overt or subjec-
tive responses evoked in patients during or following
direct galvanic stimulation of the exposed cortex. This
may be done either during an awake surgery or through
the chronic temporary implantation of surface elec-
trodes. Aside from the obvious risks involved in such
approaches, the technique has many technical limita-
tions. In the vast majority of cases, for example, the
electrodes can only stimulate effectively the outer few
millimeters of the brain, whereas well over two-thirds
of the cortical surface either is buried deep in sulci or
is exposed only to the medial or inferior surfaces of the
brain and is thus inaccessible. The complexity of the
task that can reasonably be performed by the patient
in surgery is clearly limited and the surgeon must, in
any case, work very quickly to avoid secondary damage.
The semipermanent surface electrodes have surpris-
ingly ill-determined localizations; in some cases they
may actually shift in position by several centimeters
over a few weeks of implantation.

Localization of activity through surface EEG is an-
other commonly used method in surgical planning.
Though noninvasive, EEG offers only relatively crude

localization of activity, on the order of a few centimeters
(37), and its sensitivity drops rapidly with distance from
the surface of the head. Even in the identification of
epileptogenic foci, EEG is notoriously limited in its lo-
calizing power (38).

The continued popularity of the intracarotid amytal,
CTIONAL MRI 203

or Wada, method (39) underscores just how limited the
available imaging methods are. In the Wada technique,
a small injection of sodium amytal is administered
through one side of the carotid system (a surgical proce-
dure), and the patient is given a variety of either lan-
guage or memory challenges. The time elapsed from
injection to detectable decrease in function is then re-
corded and the procedure is repeated, after a suitable
recovery period, with a contralateral anesthetic injec-
tion. Though something of a simplification, the primary
end product of the study is the inference that if the
patient’s behavior collapses more rapidly with injection
on one side, that half of the brain is implicated in domi-
nant control of that behavior. On this basis, the surgeon
must determine whether or not a critical function such
as language is likely to be spared following cortical re-
section.

Functional MRI already offers significant promise in
these applications (40). Binder et al. (41, 42), Benson
et al. (43), and others, for example, each have demon-
strated that fMRI methods may be more accurate than
Wada examinations in assessing language dominance.
Determinations of areas of hand and other motor activ-
ity are a routine component of the fMRI literature and
are achieved with relative ease (24, 32, 44–46).

In fact, the basic science literature suggests that
much more subtle definitions of eloquent cortex will
be possible in the future. Interestingly, however, the
surgeon’s information requests tend to be quite coarse;
generally the surgeon asks only, “can I operate safely
in this brain region without loss of language/motor func-
tion?” In retrospect, the reasons for this are relatively
clear. Before the functional examination, anticipating,
for example, tumor resection, the surgeon will generally
have available a structural study showing the location
of a lesion. If that lesion lies in one of the obvious
primary sensory or motor areas of the brain, the sur-
geon will see clear risk of damage and will want a
functional assessment. In practice, the lesions often
show mass effects that distort the cortical geography,
and it is difficult to guess what functions are likely to
be hampered. As only a limited number of functional
assays may be performed with today’s techniques (due
to time constraints and other factors, see below), the
surgeon must limit his or her questions to only the most
severe risks.

Another important class of surgical planning applica-

tions will be in the preoperative assessment for pallido-
tomy or other stereotaxic lesions. In these cases, the
surgeon should be able to directly visualize the brain
regions associated with common disorders such as Par-
kinsonism, and use the activation studies to guide later
electrode placement. These are technically complicated
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studies, however, because the typical patient popula-
tion is both elderly and impaired in ability to perform
controlled motion. One consequence is a tremendous
problem with motion artifacts (see below) that results
in a large number of technical failures.

Neuropsychiatric Applications

It is by now well accepted that some classic neuropsy-
chiatric disorders, such as schizophrenia, are accompa-
nied by morphological changes in the brain (47–52),
yet imaging is still used rarely in diagnostic workups.
Our own work (53) and that of many others [e.g., Early
et al. (54), Cleghorn et al. (55, 56), Buchsbaum (57),
Buchsbaum et al. (58, 59), Friston (60), Friston et al.
(61), Frith et al. (62), Liddle et al. (63), Gur and Pearlson
(64), Silbersweig et al. (65, 66)] have suggested that
there are distinct structural or functional abnormalities
associated with psychiatric disorders that are visible
in functional MRI or other imaging protocols.

We predict that functional MRI will have significant
applications not only in the diagnosis of relatively com-
mon affective disorders such schizophrenia and depres-
sion, but will be a major adjunct to the medical manage-
ment of these diseases, guiding the internist in the
effective prescription and dosing of pharmaceuticals.
The majority of the published functional imaging stud-
ies in schizophrenia have been performed using PET
imaging which, though obviously effective in demon-
strating abnormalities, is not, and is not likely to be-
come, as widely available as fMRI. The effective use of
fMRI in this context is challenging, however, as the
most sensitive PET measures have been based on FDG
tracer studies. Since, at present, there is no clear MRI
analog to such resting state descriptions of regional
brain activity, we still need to develop effective func-
tional protocols in the affective disorders. Some may be
based on semiquantitative resting techniques such as
spin-labeling (67, 68), but it is reasonable to expect that
others will be based on the more dynamic confrontation
protocols that are the traditional domain of fMRI. For
example, Silbersweig and colleagues, using PET, (65,
66) and our own group, using fMRI, (53) have shown
dynamic changes in regional blood flow that are corre-
lated temporally with auditory hallucinations and
bring us closer to the development of a meaningful clini-

cal diagnostic protocol for the evaluation of central dys-
functions in schizophrenia. Others have shown (69, 70)
that some of the characteristic behavioral abnormalit-
ies in the disease, such as eye-tracking changes, may
be visible in fMRI studies as an alteration of the normal
patterns of activation.
COHEN

Spreading Disorders: Jacksonian Seizures,
Migraine, Scotoma, and Stroke
Several relatively common neurological disorders are

characterized by an apparent progressive spreading of
the neural dysfunction that takes place over seconds
or minutes. Classic Jacksonian epileptic seizures, for
example, often start with a focal motor twitch in the
extremities and progress centrally, ending, ultimately,
in generalized seizures. Migraine headaches may have
an analogous course, starting with focal signs such as
visual scotomas, field cuts, or distortions, and pro-
gressing to generalized headaches. Woods et al. (71)
have shown that the spread of migraine might be visible
by blood flow imaging. The possibility of observing brain
maps of such phenomena in real time may lead not only
to a better understanding of such disorders, but also to
the development of therapeutic interventions to arrest
the symptom progression.

Why Must fMRI Methods Be Improved for Clinical
Applications?

The majority of the published fMRI work has been
fundamentally technological, with a smaller number of
experiments addressed directly to questions in physio-
logical or cognitive neuroscience. With the success of
the technique has come both tremendous scientific and
lay interest and many emerging clinical applications.
fMRI is a relatively new method, whose interpretation
relies on many assumptions; some of the important ones
[in common with H2

15O PET (72)] are that: (1) MR signal
change, presumably due to hemodynamic changes,
bears a reliable relationship to neural activity; (2) other
stimulus-correlated changes [e.g., head motion (73)] are
small or readily corrected; and (3) “ceiling” and “floor”
effects of signal changes can be neglected over the physi-
ological range studied. Despite these theoretical limita-
tions, the experimental results have been impressive
and both confirm the results of more direct measures,
such as local electrical recordings, and are predictive,
for example, of losses following surgical extirpation of
tissue. As fMRI matures and becomes increasingly the
domain of the applications researcher, the underlying
validity of the physiological assumptions and the stabil-
ity of the experimental apparatus become increasingly
important factors in data interpretation. In a recent

editorial (74), we argued that, even now, many dubious
interpretations of fMRI data are based on overambi-
tious acceptance of the power of the current imaging
and analysis technology, a regrettably large fraction of
which are part of the current literature. Very clearly,
there is much work to be done in the development of
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accurate and reliable data collection and analysis strat-
egies, particularly for applications in mental health re-
search.

Avoidable Experimental Failures
As fMRI is a newly developed method, much of the

early work has concentrated on results obtained from
normal or supernormal (selected from the research
staff) subjects, and has been collected over long, and
often repeated, sessions. In these cases, the occasional
experimental failure, though inconvenient, is only mini-
mally limiting. In our hands, 20% or more of the data
may be evaluated as uninterpretable due to technical
failures. A casual review of the published fMRI litera-
ture suggests that this yield is not atypical. As the
applications move to more complex populations [our
own research concerns schizophrenic, elderly, and pedi-
atric subjects (40, 53, 75, 76)] experimental failures
become not only expensive, but in many cases funda-
mentally limiting. To work with these important subject
groups, it is necessary to have a highly reliable data
collection and analysis process that includes an imme-
diate, objective, measure of the quality of the collected
data. Only in these circumstances will it be possible
to immediately repeat studies that fail or to continue
imaging just until a satisfactory statistical threshold
has been reached.

The causes of such technical failures are manifold.
The most commonly reported are attributed to subject
motion, a serious problem in fMRI (30, 73, 77). Gener-
ally speaking, motion artifacts cause two classes of out-

right failure. The first is obvious motion artifact, typi-

FIG. 1. Typical appearance of functional images contaminated by hi
whereas images B–D each were contaminated by one or more spikes
prior to reconstruction, the specific appearance of the spikes on the im
of the raw data origin would result in the appearance of image B. The art
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threshold (we prefer to avoid the term “statistical signif-
icance” in fMRI as the underlying assumptions in de-
termining probability, such as sample independence,
corrections for repeated measures, etc., are, in general,
unverifiable, though significant progress has been
made to develop more rigorous test, [e.g., (79)]).

Motion also can create a much more insidious set of
errors. When it is correlated with the subject’s task,
some motions can appear as cortical “pseudo-activa-
tions” (73), because of the large intensity gradients that
exist at the cortical surface in MR images: small rota-
tions or translations can appear as large signal changes
in the first few millimeters of cortex, exactly where such
activations might be expected if neurally based.

Though reported less frequently, scanner perform-
ance problems also plague the collection of reliable and
repeatable functional images. Many researchers now
favor echo-planar (Mansfield 1977) or spiral scan (80)
MR acquisitions that take advantage of ultrahigh-per-
formance gradient sets. To effectively cover the raw
data space (k space) rapidly enough to collect functional
images, it is ordinarily necessary to apply large voltages
to the gradient coil sets. A variety of instrumentation
approaches (7, 81, 82) have been developed to do so,
some delivering thousands of volts to the gradient coils.
Unfortunately, these high voltages result often in small
corona discharges or arcs containing substantial spec-
tral energy in the MR frequency range that introduce
discrete high-amplitude “spikes” into the raw data.
After Fourier transformation, such spikes appear as

characteristic diagonal banding or Moiré patterns in

the images that add considerable noise variance to thecally presented in “statistical images” as an embossed
statistical functional images (Fig. 1). These image aber-appearance with a dark edge on one surface and a cor-
rations must be eliminated (hopefully prospectively,responding light edge on the opposite (33, 73, 78). The
but often retrospectively) for reliable functional im-second presents as excessive variance throughout the

image, resulting in a failure to obtain a statistical age calculation.
gh-voltage spike artifacts during data collection. Image A is “clean,”
in their respective raw data. As the data are Fourier transformed
age can be quite variable. A single spike slightly to the left or right
ifacts in images C and D are likely the results of multiple spike events.
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Processing Strategies and Magnitude Estimations
fMRI using the blood oxygenation level-dependent

(BOLD) or T1-based approach is a method of differ-
ences; the raw data images provide little quantitative
information. To localize regions of signal change, im-
ages acquired in different conditions are compared,
voxel by voxel.

The simplest comparison is simply to subtract all
images obtained in one condition from those obtained
in another [as used in Kwong et al. (24)]. Subtraction
yields images in arbitrary units of MR signal intensity,
and is particularly prone to type I statistical errors,
as high-intensity artifacts look like areas of functional
signal change (73, 78). More commonly, at present, in-
vestigators use some manner of statistical method to
normalize the signal change by the voxel variance (the
z or t statistic, providing fundamentally similar meas-
ures), creating as output statistical parameter maps
(SPMs). This greatly reduces the sensitivity of the func-
tional maps to many sources of excess variance (83).
The t statistic is used commonly in SPMs (84) because
it gives a plausible picture of activation loci. Unfortu-
nately, the MR signal changes are not well described by
the difference in mean levels, as they contain important
temporal characteristics. Figure 2, reprinted from one
of the earliest published fMRI reports (24), emphasizes
this point: Over the course of the 1-min “on” cycle, the
signal takes nearly 10 s to reach its final intensity; the
signal has an even longer return to baseline. Clearly,
the t statistic will be overly conservative, in this case
treating the signal rise and fall time as sample variance.
It is also obvious that the signal change lags the stimu-
lus and that this effect is not captured by a simple

application of the t test. As in PET (most often analyzed

FIG. 2. Signal intensity time course in primary visual cortex during
presentation of 8 Hz patterned flash stimulation. Reproduced,
with permission.
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has the advantage that bright areas on brain maps
are likely to represent real, rather than artifactual,
activation. Bandettini et al. have developed the use of
correlation statistics to detect areas of activation (85).
In this approach, the signal intensity time course in
each voxel is cross-correlated with a function describing
the task (such as a “box car” or “square wave”) or, when
the activation blocks are short enough, with a sinusoid
that mimics the observed vascular response. In the case
of sinusoidal models, the response latency can also be
controlled or determined by allowing a phase term in
the model to be a free parameter.

Neither the z score, the t statistic, or the correlation
maps, however, are useful in comparing degrees of acti-
vation across subjects, or even necessarily in the same
subject across experimental runs. Each approach tends
to scale the magnitude representation by an estimate
of the variance which, because it is determined strongly
by subject physiology, may vary across subjects or runs,
and will depend strongly on experimental conditions
such as time between images and scan time duration.
Because the variance appears in the denominator on
such statistics, when the signal-to-noise ratio (SNR) is
large, even small fluctuations in the image variance
can create very large changes in the magnitude of the
derived statistic. As pioneered by Friston et al. (86), a
separate t map may be generated to compare activa-
tions across runs on a single subject or, with suitable
spatial normalization and image registration, across
groups. Again, the magnitudes are transformed to di-
mensionless numbers that are difficult to relate to phys-
iology. In the case of across subject comparison, they
will also depend strongly on the variations in individual
brain morphometry and task-related functional anat-
omy. In practice, the PET scanner does not yield images
with sufficient signal-to-noise ratio to withstand a Bon-
ferroni correction based on the number of voxels in the
PET image. Friston et al. have developed methods to
avoid this limitation, many of which are now used by
practitioners in the field. In their 1991 paper (86) they
proposed that, by quantifying its “smoothness,” one
could develop an estimate of the number of effectively
independent resolution elements in a PET image that
allowed a much less conservative Bonferroni correction,
and enabled PET images to reach statistical signifi-
cance in reasonable circumstances. More recently, this
group has advocated the use of relatively heavy
Gaussian smoothing to ensure that the spatial noise
using Friston’s SPM software), activation magnitude
may be expressed as a z score, dividing the signal inten-
sity change by the local variance. This statistic strongly
attenuates the apparent magnitude of activation in re-
gions with high local variance (e.g., blood vessels) and
distribution in the PET images is itself Gaussian. In
so doing, this allows the application of the theory of
Gaussian fields to the derivation of probability esti-
mates (87, 88). Such aggressive smoothing also mini-
mizes the effects of individual anatomical differences
in pooled multisubject data. As interesting as these
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techniques are, we eschew their use in MRI for the
following reasons: First, the blurring applied to the
images can dramatically reduce the apparent effect
magnitude and in some cases, entirely eliminate the
detectability of otherwise reliable events (89). Second,
the loss of spatial resolution implicit in these techniques
obviates the advantages of MRI’s intrinsic spatial reso-
lution. Most importantly, transformation to smoothed
t fields leaves no effective metric for the comparison of
magnitude across subjects or tasks; it is useful only for
hypothesis testing.

We note also that the sine-wave or Fourier analyses
as originally proposed by Bandettini, though extremely
powerful, place undue burdens on the experimental de-
signs, essentially requiring that only two conditions be
used, alternating at a fixed rate determined by hemody-
namic considerations. Newer strategies, such as those
of Buckner et al. (90) and our own as outlined below
(91), relieve many of these constraints.

MR Data, and Data-Processing, Architecture
Typical MRI instruments are architected around clin-

ical applications that involve reading the relative mag-
nitude of the signal intensity in various regions on indi-
vidual images. Few provisions are made for the sort of
time series analysis that is essential for functional MRI.
Until recently, the usual data acquisition times have
been lengthy as well, ranging from tens of seconds to
minutes for the collection of a single multislice image
set. In such circumstances, image reconstruction times
of a second or so per image were not limiting. With
the advent of practical echo-planar imaging (6, 10, 92),
however, good-quality scans can now be collected in less
than 25 ms, so that the image reconstruction times can
quickly become the determining factor in total scan
time. Consider a typical functional imaging session on

our unit, examining the signal changes during two ex-

FIG. 3. Schematic of a typical blocked protocol used at UCLA for
functional imaging. Two conditions, A and B, are compared. Each is
repeated twice with an intervening rest period.
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image is acquired every 125 ms; 2160 images are ac-
quired in the 41–2-minute study. Without modification,
our scanner processes 128 3 128 images at the rate
of 2 per second, so that the reconstruction time is 16
min—almost four times the image acquisition time.
It is seldom possible for “nonprofessional” subjects to
tolerate MR examinations longer than 90 min. Given
that practical sessions require a few minutes of setup
time, and the acquisition of a variety of structural im-
ages, this means that no more than four “functional”
runs are generally possible during a scan session.

With traditional data processing tools, the time bur-
den is extended further in functional MRI, as the statis-
tical image processing cannot begin until all images
have been reconstructed. This is because most such
computations process individually the vector describing
the signal intensity time course at each voxel. All im-
ages must be acquired before any location can be com-
pleted. A second consequence is that for rapid proc-
essing, unrealistic memory requirements are placed on
the host computer. As each time-intensity vector is
formed from all images, the usual implementations re-
quire either that the entire data remain resident in
RAM at once (2160 images * 128 * 128 pixels/image *
4 bytes/pixel (floats) 5 128 Mbyte)3 or that the data be
swapped from disk to RAM multiple times for each
pixel (Fig. 4). The data swapping results in significant
increases in data processing time. One way to manage
this is to defer all image reconstruction and data proc-
essing until all data acquisition has been completed on
a single subject. While this allows a few more runs to be
collected, it opens the overall experiment to additional
failure mechanisms. If the subject moved, instrumental
noise increased, the subject’s breathing rate was abnor-
mal, or the subject failed to perform the task (any of
which increase the denominator in the statistical proc-
essing, thereby decreasing the power or sensitivity) the
data acquisition cannot readily be repeated, for the sub-
ject will be long gone before the processing has been
completed.

Block Designs and Predetermined Protocols
For many experimenter-driven protocols, it is accept-

able that the timing of the behaviors or stimulation
be fully determined in advance. In fact, until recently,

nearly all published fMRI data used this sort of design.
We are, however, aware, that this is severely limiting
to applications and is a very poor model for real-world
perimental conditions A and B and a rest condition in
a block design. In a typical block design, the A and B
conditions are repeated twice each and are separated
by rest periods (Fig. 3): 20 axial slice locations of 4-mm
thickness cover the entire brain. At a TR of 2.5 s, one
behaviors. In some cases it is interesting to determine
the activation state of brain regions at a variety of time
points in processing of a single task. In the study, for

3 At the time of this writing in 1999, such memory requirements
are highly limiting.
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example, of mental object rotation, (93–95), the actual
task processing times can be quite long (up to 12 s),
leaving open the possibility that fMRI can be used to
study activity during components of the rotation task.
Since the task processing time may be indeterminate
(depending on the subjects ability) it is not realistic to
use a blocked experimental design in this case. Similar
examples abound in other cognitive applications.

In a blocked experimental design, the subject per-
forms a single task repeatedly for the duration of a
block and switches tasks in each new block. The most
commonly used data analysis approaches (85) explicitly
require blocked designs, or even periodic, blocked ap-
proaches. Most cognitive psychophysics experiments
and studies of learning and memory do not fit well into
this design, because the subject quickly learns that all
trials in a task are the same; as a result the brain
activation pattern may change during the block. In

other experiments, the actual timing is not blocked, but

enormous demands on memory), or, when memory is limited, we must
repeatedly swap the data in and out of memory to sample all time
points. As the data set becomes larger (more time points), the memory
requirements scale proportionately. As currently configured, our
scanner can acquire more than 6000 images, which is a realistic
number for applications in cognition, but our computing systems
simply cannot be extended to keep up with this processing need.
COHEN

activity is outside of the experimenter’s control, and an
appropriate analysis method is needed. Below we show
an illustrative example.

Proprietary and/or Localized Image Analyses

There are already a few other tools, including particu-
larly AFNI (written by Dr. Robert Cox and colleagues),
SPM (written by Dr. Karl Friston et al.), and MedX
(Sensor Systems), that offer reasonably convenient ac-
cess to analyze images from a variety of scanners. Of
these, at this writing only AFNI appears to have been
extended to real-time use; the others are designed
around off-line processing. Further, unix workstations,
as needed for the available tools, are notoriously diffi-
cult for single users to maintain and typically require
the help of individuals with tremendous computer so-
phistication. While many research centers have excel-
lent access to high-end computing on expensive workst-
ations, and have a budget appropriate to obtain site
licenses for tools such as MatLab, the majority of clini-
cal imaging centers do not. There is a remarkable lack
of quality radiological review and analysis tools avail-
able for the sorts of small computers that might be more
available to clinical centers, and there is very little
attention in the marketplace to software packages that
are easy enough for the computer nonspecialist to use.

Though many instrument vendors claim to support
the ACR-NEMA format for image data interchange, in
practice, it is usually necessary to use the manufactur-
er’s proprietary data format to exchange and view im-
ages readily. Since there are few, if any, tools for small
computers that already recognize such formats, the typ-
ical clinical user is bound to the scanner manufacturer

or the expensive solutions suggested above, if she or he

Neurosciences
may not be knowable in advance. For instance, there
has been a great deal of interest in the use of fMRI
potentially to isolate foci of epileptogenic activity based
on the signal changes that might accompany interictal
spike discharges (96–98). Obviously, the timing of such

Reference
Function

320
Kbyte

128
MBytes

Functional
Image

FIG. 4. Schematic view of the structure of the four-dimensional
raw data describing a single functional imaging experiment. Each
time point is represented by a 2D slab of about 320 kByte (for 20
image planes). To form the statistical images we must, in general,
study the correlation between the time-intensity behavior of each
voxel and a reference function describing the subject’s behavior or
task. In conventional strategies, where each voxel is studied individu-
ally (e.g., the gray voxels in the upper right of the figure), we must
typically load the entire data set into main memory at once (placing
wishes to review and analyze images.
These are serious barriers to the dissemination of

functional MRI, as too much is required of the user
in learning and expense to get started readily on the
applications of the method.

METHODS AND RESULTS

An MR Instrument for Applications in the Cognitive
Our group at the UCLA Brain Mapping Division has
been active in the development of high-field MRI instru-
ments designed specifically for functional and high-res-
olution imaging of the head and brain (99). By speci-
fying an instrument for imaging of the head only, we



N
REAL-TIME FU

have been able to optimize many of the other MR per-
formance factors. Briefly, limiting the homogeneous vol-
ume to 25 cm allowed us to use a very high field strength
of 3 T without suffering undo cost. We were able to
eliminate the need for a body RF coil. This allowed for
a larger magnet clear bore, elimination of the body RF
shield (and its associated eddy current losses), and the
use of a solid-state RF power amplifier, as only 3000
W are needed (as opposed to the 30 kW that would be
needed for body RF). The major advantages, however,
will likely occur in the gradient technology. MRI speed
is a strong function of gradient strength and rise time.
These, in turn, are limited both by power requirements
and by the possibility of current induction in the human
body. Reducing the gradient volume to cover only the
head mitigates the power problem dramatically, as the
power requirements scale with the fifth power of the
gradient diameter due to increases in efficiency. As dB/
dt increases with distance from the gradient isocenter,
it follows that smaller, head-only gradients, can switch
at higher rates and remain below the threshold of
sensation.
Figure 5 shows representative high-resolution im-

FIG. 5. High-resolution MR image (A and magnified in B) obtained
similar histological postmortem specimen (C). The MR images from this
and can thus demonstrate extremely subtle anatomical features, such
in C). MR parameters: TR, 4000; TE, 25 (effective); fast spin-echo seque
8:38. (C) is reproduced, with permission, from DeArmond et al. (100).
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signal-to-noise ratio (SNR) and contrast that subtle de-
tails, such as the white matter of the perforant path,
are readily apparent in the images. In many functional
imaging applications, such high-resolution conven-
tional images are used in certain circumstances in pro-
ducing high-quality surface renderings of the image
data as a base on which to superimpose and localize
activation maps. The analysis techniques shown here
take advantage of this performance, but the results are
fully generalizable to the more conventional 1.5-T and
small instruments.

The high intrinsic SNR of this unit, coupled with its
unusual gradient performance, have allowed for dra-
matic EPI results as shown in Fig. 6. Figure 6 shows a
multislice echo-planar series covering the entire human
brain. Each 5-mm slice plane was scanned in 78 ms
using a spin-echo sequence (“MBEST” (101) or “Insta-
scan” (9, 102). Lipid suppression, immediately preced-
ing each excitation (103), results in a maximum acquisi-
tion rate of about 10 such images/s. The relative absence
of spatial distortions due to susceptibility effects (104)

as compared with other high-field EPI data sets (105)

is due largely to the high readout switching rate (1400ages obtained from this unit. On the left is a 3-mm slice
Hz in these images) and the image-based shimmingthrough the hippocampus, obtained in under 9 min as
(106) of the linear and second-order terms. We stresspart of a multislice series. On the bottom right is a
that Fig. 5 and 6 are of routine image quality. Thehistological section from a similar brain slice (in a non-

living subject). The high-field MR unit has sufficient echo-planar data sets are of particular relevance to the
from the brain mapping research MR instrument, compared with a
instrument achieve extremely high signal-to-noise ratio and contrast,
as the perforant path from hippocampus to entorhinal cortex (arrow
nce; ETL, 8; thickness, 3 mm; matrix 512 3 512; 2 NEX. Scan time:
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functional imaging studies; images of this kind are the
basis for the activation data shown later in this section.

Data Processing Rates

Image Reconstruction
As alluded to above, the practical requirements on

traditional imaging systems have only entailed that a
relatively small number of images (usually fewer than
100) be reconstructed in a time short compared with
the typical scan times (5 to 10 min). Echo-planar-based
functional imaging suffers from much more severe con-
straints. Working very closely with the scanner manu-
facturer, we developed modifications to the core image
processing code and hardware on the Advanced NMR
system that have increased the basic image processing
speed from 2 to nearly 8 images/s for 128 3 128 MR
images. The main modifications included the addition
of a Sky array processor with four Intel i860 processors
and 16 MB of dedicated memory with careful attention
to vectorization and optimization of the image proc-
essing code, so that, for example, floating point opera-
tions and static variables were kept to a minimum. Most

of these changes were implemented by Xiaole Hong, of

FIG. 6. Echo planar imaging at 3.0 T. Shown are 20 4-mm axial sec
echo EPI sequence. The field of view of 20 3 20 cm is covered with a m
1.5 mm. Other parameters are: tr, ` (EPI single shot); t, 54 ms; reado
COHEN

remotely mounted disk. Commercial units are now
available that reach this inconstructive speed readily.

Statistical Image Processing
We have discussed already how typical algorithms

for calculation of the t statistic or correlation coefficient
examine the time intensity behavior of each image voxel
as a vector and require, therefore, that all data be ac-
quired prior to beginning the data processing (108).
This, of course, is anathema to the real-time data proc-
essing goals of the present project. Even after the data
are collected, this approach is woefully inefficient, as
it places extraordinary burdens on the random access
memory (RAM) size of the processing computer or re-
quires tremendous amounts of disk swapping (Fig. 4).
Our approach is simple: rather than work on vectors
of time data, we work on vectors of images. As an exam-
ple, we consider the calculation of the correlation coeffi-
cient, r, using the standard formula of Pearson,

r 5 N(xyi 2 (x(yi /!{N(x2 2 ((x)2}{N(yi
2 2 ((yi)2},

letting x represent the paradigm reference waveform
(which is common to each voxel in the volume) and yi
represent the pixel intensity at volume location i. The

calculation must therefore be repeated once for eachAdvanced NMR Systems, and the PI (107). Since such

modifications are standard computing procedures, we voxel in the image. However, it is necessary only to
maintain in memory three volume-sized vectors con-will not detail them here. As detailed below, our initial

implementation has also included modifications to the taining the current values of each of the sums in y, y2,
and xy, and scalars containing the terms in x and x2 todatabasing code to allow us to save the images to a
tions through a normal brain, each acquired in 78 ms using a spin-
atrix size of 128 3 128 pixels for an in-plane resolution of just over

ut duration, 46 ms.
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update the value of r for each voxel as each new image
arrives. Figure 7 shows the three summary images after
75 images of processing. As we will see below, it is
expedient in practice also to maintain vector descrip-
tions of the x and x2 terms for the convolution analysis.
For the typical fMRI data set described above, assuming
that we wish to perform this processing on all 20 slice
locations continuously, our approach requires only
about 6 Mbyte of RAM. Further, as the time series
becomes longer, the RAM requirements are unchanged;
only increasing the number of slice locations increases
the memory need, and then only linearly. We can, in
fact, process an unbounded number of time points using
the same, limited, RAM store.

The advantages are immediately apparent. Table 1
shows the benchmark results for the traditional vector-
based calculation and our modified algorithm in proc-
essing of typical data sets, using a DEC Alpha 3000/
300 LX workstation. While the conventional processing
dealt with each location sequentially, the modified algo-
rithm handles all 20 locations simultaneously. In data
sets of more than 200 time points, the conventional
approach fails completely, even with 64 Mbyte of RAM
and 500 Mbyte of swap space, whereas our modified
algorithm maintains a constant processing speed of 39
images/s. This approach to image statistics can be ap-
plied just as easily to t tests though, as discussed above,
we do not typically favor their use.

The MR Impulse Response
FIG. 7. Our real-time processing scheme takes advantage of the fac
summary values in y (A), y2 (B), and xy (C). We maintain such summ
use the products and ratios of these summaries to derive our final sta
CTIONAL MRI 211

suggest that there exists an important regime over
which such analysis is appropriate, as will be discussed
below. Even with the limitations of these assumptions,
our preliminary data suggest that modeling the fMRI
responses based on convolution of its impulse response
provides a reasonably accurate fit to the responses to
real-world stimuli; these response models can then form
the basis of correlation analysis to detect areas of acti-
vation.

For an estimate of the impulse response, R. Savoy of
the Rowland Institute (Cambridge, MA) has provided
us with data representing the averaged fMRI response
to 10 repeated presentations of a brief (1-s) light flash.
We have modeled these data by creating a three-param-
eter fit to a gamma variate function (S 5 k t8.6e2t/0.575,
where k is simply a scaling function).

Because the system is causal, the convolution need
only be applied to data following the behavior. One
extremely important result is that the correlational

analysis can still be performed in real time, as the con-
volution, in essence, is a weighting function to be ap-
plied only to future images (see below). In fact, for more
than 400 ms following the stimulus, no response is seen.

We recognize many limiting assumptions in this anal-
ysis approach: The system is known to be nonlinear

TABLE 1

Conventional Modified
Data size processing processing
It is a basic result of linear systems analysis [see, for
20 locations, 0:39 5 12 images/s 0:14 5 39 images/sexample, (109)] that for a linear, time-invariant system, 25 time points

the convolution of its impulse response with an arbi- 20 locations, 2:27 5 14 images/s 0:56 5 39 images/s
110 time pointstrary input will yield the system’s response to that in-

20 locations, Could not complete 1:42 5 39 images/sput. While the human brain a priori fails to meet the
200 time pointsconditions of either linearity or time invariance, we
t that both correlation and t statistics can be made from the ratio of
ary images in memory during continuous statistical calculation and
tistical maps.
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(see above), the system is surely time-variant (humans
learn, accommodate, habituate, etc.), and the impulse
response in the visual system is a questionable model
for the impulse response in other areas. We, however,
believe that each of these assumptions may be tested
directly and, where they fall short, may be corrected
for. We note also that similar approaches have been
developed and tested by others [see, for example, Buck-
ner, et al. (90)]. Deconvolution methods have promise
in deriving the impulse response function from the raw
data, given sufficient information about the stimulus
and or behavior (110), and have, in fact, been used to
develop event-related fMRI maps.

A Simple Example in the Motor System
Figure 8 shows a finger tapping protocol and its con-

volution with the impulse response above (the scaling
constant, k, has been adjusted to give a unit amplitude
response to extended stimuli). In this protocol, the sub-

ject alternates 20 to 40s blocks of rest with 20 s of finger

FIG. 8. Top: Finger tapping protocol and response estimates. Gray
thumb to each finger at a rate of 2 Hz). The raw time data are indic
convolution method described is shown below. Bottom: “Activation” ma
estimate (bottom) in three different slices. Arrows show activation clu
COHEN

system using the following parameters: Echo-planar
sequence, TR 5 2.5 s, TE 5 42 ms (5T2*), slice thick-
ness 5 5 mm, 16 locations, FOV 5 20 3 20, matrix 5
642. The fMRI data, extracted from a region of interest
in the precentral sulcus, show excellent concordance
with the estimated fMRI response. In this region, the
correlation coefficient exceeded 0.78. By comparison, in
the same region, the correlation with a square wave
(boxcar) describing the behavior in the same region was
less than 0.61. In essence, the estimation procedure can
be seen as reducing the data variance by incorporating
the shape function. The image maps shown to the right
further emphasize this point, showing maps in three
slice locations made using either the t test or the corre-
lation with the response estimate. The latter shows
more focal and intense areas of activation and less ex-
traneous “signal” outside of motor areas. Combined,
these data are promising in suggesting increased sensi-
tivity using this analysis procedure.
tapping. Note that the predicted response lags the stim-
Linearityulus, as observed in early fMRI papers (24) and that

several seconds are required for the response to reach In many cases, linearity need not be assumed: it is
possible to suitably transform the input to model theits peak.

This experiment was performed on our 3-T imaging nonlinearities of the neurovascular response. Figure 9
bars indicate periods of hand motion (sequential opposition of the
ated by the filled symbols, and the response estimate based on the
ps derived using the t statistic (top) or correlation with the response
sters.
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shows the response in paracentral gray matter as a
function of finger tapping rate and the response in vi-
sual cortex as a function of light flash rate. Both pat-
terns in the signal intensity (SI) are well-fitted by a
monoexponential of the form

SI 5 k(1 2 e2mB),

where B models the behavioral intensity (finger tapping
rate or visual contrast) and m and k are fit parameters.
Because a ceiling effect must exist for stimuli over a
certain level, a response of this general form is not unex-
pected.

Slope or Beta Maps
One advantage of the model fitting procedure de-

scribed above is that it is a straightforward matter to
transform these data into an estimate of the response
amplitude by calculating the slope of the best fit be-
tween the observed signal change and the model. If the
model parameters are scaled to unity at peak, then the
slope can be expressed in percentage signal change per
unit input. Unlike the t maps, z scores, or correlation
maps, these maps provide a normalized measure of re-
sponse amplitude that can be compared across subjects
and trials. While maps of percentage signal change for
a given stimulus share this virtue, it is far from clear
whether such maps should express peak signal change,

average signal change, or some other function. The in-

FIG. 9. Left: Mean fMRI signal paracentral gray matter as a func-
tion of finger tapping rate. Right: fMRI signal in V1 as a function of
frequency of patterned flash presentation from 0.25 to 8 Hz (Note:
The signal is known to decrease at higher flash frequencies (24, 111).
Plotted are the mean and standard error of the fMRI signal intensity
during the stimulus interval and a fit to the raw data based on a
simple logarithmic response.
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more detail in (91). The most important result of the
slope transformation, however, is its high degree of re-
peatability. While our data (and many published pa-
pers) show tremendous intertrial variability in the
number of pixels above a correlation threshold, the
slope parameter is highly stable (112).

Further, slope maps such as these allow an expres-
sion of the response magnitude for even complex tasks.
Figure 10 is such an example, in which the slope map
shows the percentage change in signal associated with
changes in attention. For the tactile attention task the
subject was to respond with a finger press using his
dominant (right) hand each time he felt a touch on his
left ring finger. In the verbal task, the subject was to
monitor a semirandom stream of words for a target
word (“Albania”). Both stimuli were presented simulta-
neously, but the subject alternated monitoring of the
two sensory channels. The response estimates were
treated similarly to those above. That is, they were
convolved with the visual impulse response function.
Our interpretation of these data is that directed atten-
tion can result in a decrease in signal in the unattended
sensory channels.

A Basic Implementation for Real-Time Imaging

With the technologies for the rapid construction of
quantitatively stable functional maps in hand, we have
focused on the development of real-time imaging
through the integration of the scanner, the stimulus
presentation system, the response monitoring, and the
formation in the correlation and magnitude maps is
complementary. The cc map gives an estimate of confi-
dence, while the slope map estimates magnitude. In
many real-world examples, the two are largely indepen-
dent. This method and transformation are described in
image reconstruction. Our present implementation is
shown schematically in Fig. 11.

In the General Electric/Advanced NMR hybrid sys-
tem, the central scan control lies with the Signa (Gen-
eral Electric) hardware. This initiates the data collec-
tion for each image and specifies parameters such as
FIG. 10. Signal changes in precentral gyrus (hand sensory), inferior
frontal gyrus (IFG), superior temporal gyrus (STG), and calcarine
cortex during attention to touch or word stimuli delivered simultane-
ously.
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spatial location, orientation, and slice thickness. The
Advanced NMR components control the high-speed gra-
dients necessary for echo-planar imaging, the data ac-
quisition, and basic image processing. Our modified
ANMR code presently processes the raw MR data to
images at better than 10 images per second and allows
us to save the data to a remotely mounted disk. All
further image processing is performed on a Macintosh
computer running scanSTAT, a program we have devel-
oped for this application. When the data for a complete
volume (all slices) at a given time point are acquired,
they are read into the Macintosh, together with the
behavioral data, and a new statistical map is formed.
On the 233-MHz G3 PowerPC, the new map for the
entire volume is available in less than 1/20th of a sec-
ond. Behavioral data are logged onto the Macintosh
using the standard serial port, which is more than fast
enough for this application. For example, the subject
can depress an MRI-compatible keyboard to indicate
his/her cognitive state or responses to questions. These
data are convolved immediately with an impulse re-
sponse estimate, and a file describing the convolved
response is saved locally.

This implementation allows us to acquire real-time
images with immediate feedback to the subject (107).
With this system we are able to acquire and process
functional images using behavioral protocols that are
not predetermined, while still applying the full power of

the nonlinear impulse response convolution approach.

FIG. 11. Schematic of the real-time functional imaging system. In t
system to form two-dimensional images at the rate of 10 images/s. Dig
Telefactor console. The actual statistical processing is performed on the
computer. The Macintosh system, in addition, is used for stimulus di
computing is run asynchronously.
COHEN

amount of experience in the typical artifacts associated
with the technique. The overwhelmingly important con-
cerns are with patient/subject motion and with scanner
instabilities and spiking. Our generic approach to arti-
fact detection and rejection has been to analyze each
new image or image volume by eye, and to compare it
to those acquired previously, flagging large deviations
for later correction (e.g., reregistration) or rejection in
the statistical analysis. Below, we present below data on
an automated artifact detection and rejection approach.

To provide a quick and relatively simple detection for
motion, we derive a noise threshold for the first image,
and create a mask indicating which pixels are above
and below noise. The algorithm we presently use to
determine the noise threshold first creates a 256-point
histogram of the pixel intensities (Fig. 12). It then deter-
mines the peak histogram value in the lower 15% of

the full range (which should contain all of the noise
voxels), and determines the local minimum above that
value. While the formula is empirically based, it is fully
determined by the data and correlates well with a visu-
ally defined threshold.

We then apply the same threshold to each subsequent
Artifact Rejection
FIG. 12. Signal intensity histogram for a typical MR image of the

Since our initial work in functional MRI in 1991 (21), brain. The arrow indicates the noise threshold that we calculate auto-
matically.for better or worse, we have acquired an enormous
his implementation, the MR data are processed locally on the Sun
ital EEG data are recorded simultaneously on a specially developed
Macintosh, integrating behavioral data acquired from the Macintosh

splay. Overall scan control is run from the Signa console. All of the
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image and count the number of pixels whose identity
changes from noise to signal (or vice versa) in that
image as compared with the mask for the first image.
We also compare each new image with a mask indicat-
ing the suprathreshold pixels in the image immediately
prior. Since the mask indicates pixels that are not noise,
it is a reasonable proxy for a representation of the edges
of the head. Any changes in position are likely to cause
such a change, but changes in intrinsic brain signal
(e.g., from activation) are not. Further, since there are
so many pixels that define this edge, this simple ap-
proach can detect motions of far less than one voxel.

Spike artifacts from factors such as static electricity
discharges tend to create an increase in signal through-
out the image, because the spikes generally contain
energy at all frequencies and thus, after Fourier trans-
formation, they add energy at all spatial locations su-
perimposed onto the MR signal. When the signal magni-
tude is larger than the noise, depending on the signal
phase such spikes can either increase or decrease the
magnitude MR image intensities, accounting for the
Moiré-like patterns that appear in Fig. 1. When the
noise exceeds the signal, construction of the magnitude
image effectively rectifies the noise, resulting in a Ray-
leigh noise distribution. The signal outside of the brain

or sample is almost always increased by the presence

FIG. 13. Left: Automated spike (and motion detection) 1, Percentage
as compared with the first image in the series. The gray bars repres
image showed a large increase in intensity as compared with the p
detection results. The lines labeled Cumulative represent the fractio
curve is the total fraction of voxels that have changed from noise to im
the Seq. Diff is the difference, in sequential images, in the number of v
diamonds, and squares are the results of visual identification of motio
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increase and decrease, as the head translates in posi-
tion. Unless the motions are quite large, the number
of changed pixels is likely to be much smaller than for
spike artifacts. In the event that the subject manages
to move back to the original location, we can look at
the cumulative, rather than the sequential, records of
changed pixels to see the return to position. From the
mask data it is a simple (and rapid) procedure to calcu-
late the three-dimensional center of mass. It is there-
fore possible to discriminate among the leading sources
of artifacts: spikes, transient and sustained shifts in
position.

Based on this masking procedure, we calculate a vari-
ety of measures that are useful in artifact rejection.
One output from the motion/noise detection software is
a time series representing the percentage change in the
number of voxels above and below threshold. Motion
should result in an approximately equal number of
transitions above and below threshold, while the pres-
ence of spike artifacts, which add energy to the image
overall, should result in predominantly increased num-
bers of voxels above threshold. Figure 13 shows repre-
sentative results in two different studies. The series on
the left was contaminated by six raw data spikes. On

the right is shown a series in which the subject moved

during the acquisition. Note that the difference in theof raw data spikes. We can therefore detect spikes by
number of increasing and decreasing voxels is near zerothe large number of locations whose signal intensity has
(lower curve), as would be expected with motion, as theincreased over threshold compared with prior images.
suprathreshold voxels are simply moved to a differentMotion artifacts will present as an approximately

equal number of locations in the volume whose signals location in the image volume. If we look, however, at
2, increase in number of voxels above threshold; percentage decrease
ent (on a separate vertical axis) time points at which an individual
rior image representing spikes in the MR raw data. Right: Motion
n of changed voxels compared with the first image. The sequential

age or vice versa compared with the image immediately prior, and
oxels whose intensity has increased and decreased. Triangles, circles,
n by four readers, blinded to the quantitative results.
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the sum of the number of voxels increasing and decreas-

ing, we can see the motion easily (middle curve). The
top curve shows the cumulative fraction of voxels that

FIG. 14. Motion artifact data derived in real time. The center of ma
green, and dark yellow. The RMS displacement of the head is shown be
to the prior image). The “bullseye display (right) shows the current he
the scan. This display may be useful in providing feedback to the subj
OHEN

evaluated visually by four readers blind to the com-

puted results. While there was scatter (as might be
expected) in the subjective impressions of motion, the

concordance was good with the quantitative computedhave changed since the first image. In this study, the

subject appears to have moved to a new location about assays. It is clear that choosing an arbitrary threshold
intensity (e.g., 0.8%) would effectively replicate the av-2 min into the study. To assess (somewhat crudely) the

efficacy of the detection method, the image series were erage observer results. Visual inspection, however, was
ss in three dimensions as a function of time is plotted in pale blue,
low in red (with respect to the first image) and blue (with respective
ad position (thick cross) compared with the position at the start of

ect about head position.
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not effective in detecting that the subject moved to a
new position halfway through the examination. The
center-of-mass data can provide a quantitative, though
relatively crude measure of the head position, especially
under assumption that the head moves as a rigid body.
Representative data from the artifact detection tools,
as represented by scanSTAT, appear in Fig. 14. This
figure also shows a two-dimensional position indicator
that is useful in tracking changes in head position dur-
ing the scan. The architecture of the system allows
this indicator to be presented directly to the subject, if
desired, to offer feedback on the head position.

The corrective strategies for these different artifact
sources also differ. In the event of an isolated spike
event, usually instrument-related, the image must be
omitted from further data analysis. If the subject
moved, and returned to home position, the data can
either be kept, if the statistical threshold needs can
tolerate such motion, or disposed of. When the patient
moves to a new position and stays, then we have addi-
tional alternatives: we can use an automated image
registration scheme, such as Dr. Woods’ AIR software
(113), or the method of Pellizzari and co-workers (114,
115) to bring the images into register, or we can process

the statistical data in separate blocks, possibly reregis-

at large, not only in enabling a completely different
tering the functional maps at the end. Presently, our
software performs the artifact detection with high relia-
bility; scanSTAT allows the images to be discarded from
data analysis (in real time) if they exceed user-defined
thresholds for positional changes or other artifacts.

SOFTWARE DESIGN

The real-time fMRI package, scanSTAT, is currently
written in ANSI C, with a few C11 components, and
executes natively on a Macintosh computer. This imple-
mentation was selected because of the high
performance/price ratio of such small computer sys-
tems, the familiar and easy-to-manage user interface
on these computers, and the ready integration with
other laboratory tools including stimulus devices and
software. We have also made extensive use of a pro-
gramming shell known as EasyApp written by Trudeau
(116). Because the PowerPC processor used on the cur-
rent generation of Macintosh computers is exceedingly
fast, we have been able to perform all of the application

programming in high-level languages, without, for ex-
ample, resorting to the use of machine language for
inner loops.

As attractive as this architecture is, we realize that
it has certain limitations for the community at large.
At present, we are rebuilding the software in Java, with
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low-level functions written in ANSI C11. With this
system design, we intend that it should be a relatively
straightforward matter to port scanSTAT to a wide vari-
ety of platforms while retaining real-time performance.
There will still be limitations at the scanner end, of
course, as not all commercial scanners allow rapid ac-
cess to the image or raw data early in the processing
stream. Further, we intend to develop a “plug-in” fea-
processing with routines that can be added automati-
cally to the processing pipeline. By the time this report
is published, this Java-based version should be avail-
able at our web site: http://www.brainmapping.org/
scanSTAT/.

SUMMARY

These studies indicate that real-time continuous im-
age processing of functional MR data may be realized
using conventional computing equipment. Further,
they suggest that tools of linear systems analysis can
be applied to fMRI data to yield improvements in sensi-
tivity with practical importance. We have shown also,
that based on the general approach of fitting fMRI data
to careful estimates of the vascular response function,
it is possible to derive fit parameters, particularly the
slope of the signal change versus unit input, to form
response magnitude maps that can be compared across
subjects. The data presented on artifact rejection and
detection indicate that we have a reliable method to
identify the most common artifacts in functional MRI.
Combined, these data suggest that we have the tools at
hand to perform the needed computations for a practical
and usable fMRI analysis system.

The use of fMRI is still growing explosively. It is
highly attractive for its high sensitivity, spatial resolu-
tion, and noninvasiveness. Real-time processing, we be-
lieve, will have substantial value to the user community
class of experiments, but also in making the entire im-
aging process much more efficient and offering a much
more interactive approach to image analysis than is
available in the current generation of time-consuming
offline processing tools.
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